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Abstract:  Two dimensional arrays of monodispersed Ag-nanoparticles 
separated by different gaps with sub-10 nm precision are fabricated on 
anodic alumina substrates with self-organized pores. Light scattering spectra 
from the arrays evolve with the gaps, revealing plasmonic coupling among 
the nanoparticles, which can be satisfactorily interpreted by analytical 
formulae derived from generic dipolar approximation. The general formulism 
lays down a foundation for predicting the Q factor of an array of metallic 
nano-particles and its geometric characteristics. 
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1. Introduction  

Since the first study on the color of colloidal gold by Faraday in 1856 [1], the optical properties 
of an ensemble of metal particles with different sizes, geometries, and spatial arrangements 
have been a subject of intensive research efforts.  With the publication of Mie’s scattering 
theory in 1908 [2], the anomalous optical properties of single gold colloidal particles have been 
uncovered and are attributed to the collective resonance of its free electrons in response to an 
impinging electromagnetic wave.  Due to the rapid progress of nanofabrication technology [3] 
in past two decades, the subject took a dramatic renaissance, especially in the search of novel 
optical properties of large nano-structured systems.  This recent development ushered in a new 
research field called ‘plasmonics’ [4].  Among many research topics in plasmonics, one of the 
central themes is to create anomalous optical properties by tailoring the electromagnetic 
interaction among the nanoparticles.  For examples, it is desirable to custom design structures 
with delocalized electromagnetic resonance characters (surface plasmon polaritons) [5] and to 
fabricate efficient electromagnetic enhancers for surface-enhanced Raman scattering (SERS) 
[6]. Especially, uniformly stable SERS measurements have been demonstrated on sculpted 
metallic surfaces made by nanosphere lithography [7] and metallic nanoparticle arrays 
embedded in anodic aluminum oxide (AAO) [8].  It is believed that through plasmon coupling 
‘hot spots’ are created in these SERS substrates [9].   

The electromagnetic interaction between nanometer-sized particles has been studied 
experimentally in the case of isolated pairs [10-12] and the arrays [13] of particles fabricated 
by electron-beam lithography or nanosphere lithography. Through far-field spectroscopic 
measurements, the observed relationship between scattering spectrum and interparticle spacing 
was explained by dipole-dipole interaction between the particles [14]. This relationship was 
also investigated by numerical analysis like discrete dipole approximation [10] and finite-
difference time-domain method [15].  However, only qualitative understanding was provided 
and simple analytical model is still missing, limiting our ability to design arrays of 
nanoparticles for technological applications. In addition, the experimental studies are limited to 
large disk-shaped nanoparticles made by electron-beam lithography or complex sculpted 
structures made by nanosphere lithography and other special deposition techniques [16]. The 
complex geometry of these nanoparticles renders the interpretation of the spectra difficult.  
There have been several theoretical efforts in the establishment of simple comprehensive 
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models.  Persson and Liebsch studied the optical properties of two-dimensional metallic 
spherical particle arrays and derived an analytical formula for the dependence of the spectral 
peak on the interparticle spacing [17].  In a study of scattering of light from one dimensional 
dipole chain, Markel derived an analytical formula for effective polarizability in long-
wavelength limit and pointed out the connection between spectral characteristics and 
electromagnetic interaction [18]. 

 In this study, we investigate inter-particle interaction of arrays of Ag nanorods embedded 
in AAO nanochannel arrays using light-scattering spectroscopy.  Using this system for the 
study has several advantages.  Firstly, well-ordered nanochannels with tunable inter-channel 
spacings and diameters have been demonstrated with sub-10 nanometer precision [8], enabling 
the precise fabrication of an array of uniform Ag nanorods with desired size and spatial 
arrangement. Secondly, with controlled electrodeposition process, Ag nano-rods with smooth 
geometry can be produced, facilitating simple modeling of the optical properties of these 
nanorods.  Thirdly, these Ag nanorods are surrounded mostly by alumina, which simplifies the 
effect from the surrounding medium.  This is in great contrast to the other systems fabricated 
by electron-beam lithography and nanosphere lithography.  These advantages therefore allow 
us to derive simple quantitative model to interpret the three spectroscopic characteristics (peak 
position, width and intensity) acquired from far-field scattering spectra.   

 

Fig. 1.  Variation in interparticle spacing (Δr) vs. mean interparticle spacing ( r ).  Inset shows 
the histogram of interparticle spacing (r) for a sample with r  = 30 nm. 

 

2. Sample preparation and measurements 

Preparation of silver nanorods inside AAO has been described elsewhere [8]. Briefly, self-
organized, hexagonally close-packed AAO nanochannels were fabricated by anodizing an 
electropolished aluminum foil.  The spacing between nanochannels, r, was adjusted by varying 
the anodization voltage.  A fixed diameter of 25 nm was prepared by subsequent etching of the 
channel walls after the anodization process. Finally, Ag nanorods were grown inside the 
channels by AC electro-deposition. In the spectroscopy study, the Ag/AAO sample was 
illuminated in dark-field mode by unpolarized white light from a halogen lamp in an inverted 
microscope. In dark-field configuration, the sample was illuminated obliquely and the scattered 
light was collected along the normal to the sample surface. It was then directed to a 
monochrometer plus charge-coupled device for spectral detection. The smallest mean 
interparticle spacing, r , achieved is 30 nm, yielding a mean gap of 5 nm [19]. The 
corresponding histogram of the interparticle spacing, as given in the inset of Fig. 1, shows a 
full-width at half-maximum, Δr, of 3 nm.  Figure 1 displays Δr as a function of r  for all the 
samples prepared for the spectroscopic measurement. A typical scattering spectrum exhibits 
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two peaks (not shown), corresponding to the transverse and longitudinal modes [20] of the 
plasmonic resonance which can be assigned by polarization dependency of these two modes.  
The rod length of all the samples used in this study was adjusted to be approximately 100 nm 
such that only the transverse mode is visible in the spectral range of interest.  

3. Theory 

The Ag nanoparticle arrays in our study can be considered as two-dimensional hexagonal 
arrays made of Ag prolate spheroids in AAO matrix.  In the case of arrays of particles, the local 

field ( )loc iE r  for the particle located at ir  is the sum of the incident field ( )inc iE r  and the 

fields induced by the rest of particles.  The effective polarizability of the arrays can be derived 
accordingly:  
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Tα  is the polarizability of a single prolate spheroid of the transverse mode in an electrostatic 

field, 2k π λ= , ijθ is the angle between ijr  and ( )inc iE r , and ij i j= −r r r . Considering 

long-wavelength approximation, Eq. (2) becomes 
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neglecting the far-field term.  It can be shown that the resonance frequency, TΩ , the 

corresponding width, Γ , and the peak scattering intensity at TΩ , ( )TI Ω , are expressed as: 
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where εm is the dielectric constant of the surrounding medium, 3 2 3S R h L= , 
( )1C L L= − , R and 2h are the radius and the length of the spheroid, respectively, L is the 

depolarization factor, and N(r) is the surface particle density.  In the derivation, Drude model is 
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assumed for the dielectric function of Ag with plasma frequency, pω , and relaxation time, τ , 
as parameters.  The detailed derivation of Eqs. (4)-(6) is presented in Ref. 19.  In the case of 
arrays of spherical particles in vacuum, the resultant resonance frequency agrees with the 
derived result by Persson and Liebsch [17] and exhibits a dependence on /R r  which was also 
obtained by many research groups [10-12].  Equation (5) shows that the spectral width is also 
dependent on the coupling between adjacent particles in the array, which was ignored 
previously [10-12, 17].  As described above, the coupling by the adjacent dipoles introduces 
the imaginary term in U and therefore extra contributions to the imaginary part of effα , as 
shown in Eq. (1).  This additional quadrature component in effα  causes effective absorption 
that reflects the energy flow from a specific dipole to its surrounding dipoles and therefore 
gives rise to extra broadening in Γ.  For narrower interparticle spacings, TΩ  exhibits red 
shifting and B becomes larger, thus leading to an increase in Γ.  Finally, Eq. (6) presents the 
fact that the peak intensity is proportional to the square of the Q factor of the system, which is 
equal to TΩ Γ  and directly reflects the field strength at the resonance frequency in this 
plasmonic system [21]. 

 

 
Fig. 2.  Normalized scattering spectra from Ag nanoparticle arrays with mean interparticle 
spacings: 50 nm (violet line), 45 nm (blue line), 40 nm (green line), 35 nm (orange line), and 30 
nm (red line). 

 

4. Results and discussion 

The physical origin of the observed spectral peak shifting and width broadening induced by 
plasmonic coupling can be understood using the theoretical framework as described above.  
There are three spatial regions of interest for the field generated from a single induced-dipole: 
near, intermediate and far zone [22], which are reflected by the three terms in Eq. (2).  The 

31 ijr  and 1 ijr  terms represent the near- and far-zone contributions, respectively, while the 

21 ijr  term dominates in the intermediate zone and has a 90° phase shift with respect to the 

other terms.  The far-zone contribution becomes prominent only when ijr  is comparable to the 

wavelength and therefore is insignificant in the discussion of the coupling induced peak 
shifting and broadening.  Because the near-zone term is much larger than the intermediate-zone 
term under the long-wave approximation, it dominates the real part of U in the spatial range of 
this study, and acts as the single source in the coupling-induced peak shifting.  In contrast, both 
the near- and intermediate-zone terms contribute to the spectral width broadening [18].  Since 
the broadening is caused by the collective energy transfer between dipoles of different 
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separations in the intermediate zone, this effect could not have been revealed by the studies of 
isolated dipole pairs reported previously [10-12].  Such theoretical understanding allows us to 
conclude that the spectral peak shifting and width broadening are measures of the plasmonic 
coupling within the near and intermediate zones.  

 
Fig. 3.  Transverse-mode resonance peak ( TΩ ) and Lorentzian width ( LΓ ) vs. mean interparticle 

spacing ( r ).  Red solid lines are theoretical fittings. 

The theoretical derivation above paves a way to analyze scattering spectra of Ag nanorod 
arrays with different interparticle spacings. The normalized scattering spectra of the five 
samples with r  = 30, 35, 40, 45 and 50 nm are shown in Fig. 2.  Clearly, the transverse mode 
is red-shifted and broadened as r  decreases.  This is consistent with previous experimental 
findings [10-12].  The scattering spectra were fitted with Voigt profile [23] in frequency 

domain to extract the spectral peak ΩT and width VΓ .  The dependence of TΩ  on r  is shown 

in Fig. 3 and was fitted with Eq. (4).  The pω obtained from the fitting of ΩT, as shown in the 

third column of Table 1, agrees well with that extracted from fitting the optical constant of Ag 
to the Drude model [24] (in the second column of Table 1).   

The spectral peak-shift analysis provides a foundation for subsequent analysis of the line-
width broadening.  In particular, the dependence of the spectral peak shifting on the 
interparticle spacing provides a means to incorporate the influence of the variation in the 
interparticle spacing, presented in Fig. 1, in the analysis of the spectral width broadening data.  
This bears the resemblance with the inhomogeneous contribution in atomic and molecular 

spectroscopy.  According to Eq. (4), the dependence of the variation in TΩ , TΔΩ , on the 

variation in r, Δr, can be derived [19].  This formula was used to calculate the inhomogeneous 
contribution, which has a Gaussian distribution, to the observed spectral width based on the 
result in Fig. 1 and the extracted parameters from the spectral peak-shift analysis.  On the basis 

of the relationship between the extracted Voigt width, VΓ , and r  [19], the Lorentzian width, 

LΓ , was then obtained according to the empirical relation among the Voigt, Gaussian and 

Lorentzian width [25].  The dependence of the resultant Lorentzian width on r is displayed in 

Fig. 3.  LΓ  was then fitted with Eq. (5) to obtain the parameters listed in the fourth column of 

Table 1.  Similar to the spectral peak-shifting analysis, both pω and τ  obtained from the 

fitting are in good agreement with that extracted from fitting the optical constant of Ag to the 
Drude model. 
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Fig. 4.  Scattering intensity at the peak of transverse-mode resonance, ( )*

TI Ω , (filled circles) 

and Q factor (open squares) vs. mean interparticle spacing ( r ).  Red solid line is a theoretical 
fitting. 

In addition to the spectral peak shifting and width broadening, the scattering intensity also 
depends on the interparticle spacing, as revealed in Eq. (6).  Figure 4 shows the measured 
average scattering intensity at 

TΩ  per nanorod, ( )TI ∗ Ω , as a function of r , as well as the 

fitting of Eq. (6) to the data.  Again, both pω and τ  obtained from the fitting, as listed in the 

fifth column of Table 1, are in agreement with the ones derived from the spectral peak shifting 

and line-width broadening data.  As shown in Eq. (6), ( )TI ∗ Ω  is proportional to ( )2

TΩ Γ  and 

therefore to Q2.  Because the transverse mode exhibits red shifting and its line width shows 
broadening as r  decreases, ( )TI ∗ Ω  is expected to decreases monotonically with the decrease 

in r , which is consistent with the experimental data shown in Fig. 4.  It indicates that the 
electric field energy stored in the system dissipates faster for smaller interparticle spacings.  
This r -dependent energy dissipation behavior can be attributed to the fact that the coupling 
between dipoles facilitates the energy flow between them, increasing energy loss channels due 
to electron-phonon scattering, inherent in τ.  In addition, as pointed out previously, the Q factor 
reflects the effective electric field enhancement factor of the system at the resonance frequency.  
For the applications of using these nanorod arrays in surface-enhanced Raman scattering 
(SERS) [8], the dependence of Q on r  provides direct indication how the electromagnetic 
enhancement factor varies with the interparticle spacing.  Since the resonance frequency is 
varied with the interparticle spacing simultaneously, the actual enhancement factor also 
depends on the laser wavelength used in Raman scattering.  The comprehensive model 
developed here can thus provide a design tool for SERS-substrates based on plasmonic 
coupling in nanoparticle arrays.   
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Table 1.  Comparison of the fitted plasma frequency, ωp, and relaxation time, τ, of the Drude model from the 
optical constant, ε, of Ag (Ref. 22) and those from the variation of the spectral peak shifting, ΩT, the spectral 

width broadening, ΓL, and the peak intensity, I(ΩT), based on Eqs. (4)-(6).  The errors represent the fitting error.  
The analysis of the fitting results is given in Appendix.  

 ε  TΩ  
LΓ  ( )TI Ω  

pω  (1015 rad/sec)  11.9±0.01 8.50±0.07 10.6±0.05 12.2±0.06 

τ  (10-15 sec)  6.2±0.13 --- 7.1±0.8 5.55±0.08 

 

The experimental results of the spectral peak shifting, the line width broadening and the peak 
intensity variation have been shown to fit well with the developed model based on dipole 
coupling approximation, Eqs. (4)-(6).  A question then emerges: Why does the simple dipole-
coupling model work so well in our case given the concern that other multipolar contributions 
may also be significant?  The answer to the question may first lie on the fact that the size of the 
nanorods is small enough and the shape is smooth enough that their polarizability can be 
simply represented under quasi-static approximation.  Two corrections have been proposed to 
remedy the simplified approximation.  Draine has first pointed out that the dipole polarizability 
needs to include a radiative-reaction correction (a k3 term) to account for energy conservation 
[26]. Later on, another k2 correction term was considered by many groups [27, 28].  
Considering the dimension of the nanorods and the wavelengths of interest in our case, both 
correction terms only make ~3% difference from the uncorrected polarizability.  Both of the 
two terms therefore only play an insignificant role in the analysis of the far-field scattering 
spectra.  Furthermore, the insignifant contribution of the radiative-reaction (k3 term) indicates 
that the decrease of the Q factor with the decrease in r  is caused mainly by the ohmic loss due 
to the electron-phonon scattering instead of the radiative loss.  Another issue of concern is, for 
a gap as small as 5 nm ( r = 30 nm), whether the dipole approximation is still valid and 
therefore other multipolar effects should be included in the analysis.  In a recent study of two 
coupled silver nanospheres, Khlebtsov and coworkers compared the difference in the spectral 
peak shifting between the calculated results with an electrodynamic dipole approximation as 
well as a more complete electrodynamic multipole solution [29].  Their results indicate that 
large deviation in the spectral peak shifting only occurs for 2.5r R < , which is consistent 
with our observation.  The simple analytical formulae, Eqs. (4)-(6), are therefore valid in the 
variation range of the interparticle spacing used in this study. 

5. Conclusions 

In conclusion, the electromagnetic interaction in arrays of Ag nanorods embedded in AAO has 
been investigated thoroughly by both experimental and theoretical methods.  The unique self-
organization property of AAO allows the fabrication of arrays with desired sizes, geometry, 
and precise gaps.  Analytical formulae based on simple dipole approximations have been 
derived to describe the dependence of spectral peak shifting, width broadening, and intensity of 
the scattering spectra on the interparticle spacing.  These formulae offer unprecedented 
opportunities to unravel several important subtleties of plasmonic coupling.  Specifically, the 
roles of electromagnetic interactions in various zones can be recognized and characterized 
quantitatively.  These formulae also reveal the dependence of the system’s Q factor on the 
interparticle spacing, which is closely related to the electromagnetic field enhancement of an 
ensemble of nanoparticles via plasmonic coupling.  They therefore can be exploited in the area 
of nanoparticle-enhanced spectroscopy including Raman scattering, infrared absorption, and 
fluorescence spectroscopy. 
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Appendix 

A. SEM and TEM images 

                

Appendix Fig. 1. Top view scanning electron microscopy image of Ag/AAO substrate with a 
mean diameter of 25 nm and a mean interparticle spacing of 30 nm.  Inset shows the 
corresponding cross-section transmission electron microscopy image. 

B.  Derivation of the formula 

The Ag nanoparticle arrays in our study can be considered as two-dimensional hexagonal 
arrays made of Ag prolate spheroids in AAO matrix.  The transverse-mode polarizability of a 
single prolate spheroid along its short axis in an electrostatic field is given by [20]  

 ( ) ( )
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is the dielectric function of the metal particle based on Drude model.  pω  and τ are the plasma 

frequency and relaxation time, respectively.  For silver in the visible wavelength range (400 to 

800 nm), pω  ~ 1016 rad/sec and τ ~ 10-14 sec [30].  Since 1/ω τ>> , Eq. (1) can be 

approximated as 
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ε ω ω
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α ω
ω ωω

ε τ

⎛ ⎞
⎡ ⎤− +⎜ ⎟ ⎣ ⎦+⎝ ⎠≈

− −
+

                     (3) 
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where 3 2 3S R h L=  and ( )1C L L= − .  It indicates that each particle behaves as a 

harmonic oscillator (Lorentz model) with a resonance frequency ( )1p mCω ε+  and a 

damping constant 1/τ .  In the case of arrays of particles, the local field ( )loc iE r  on each 

particle is the sum of the incident field ( )inc iE r  and the fields induced by the rest of particles 

and can be written as [31]  

 

( ) ( ) ( ) ( ){ }2 2
3 2

1
3

ijikr
ij

loc i inc i ij ij j ij j ij ij j
j i ij ij

ikre
k r

r r≠

⎡ ⎤−
= + × × + × − ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
∑E r E r r r P P r r P     (4) 

 where ijr is the difference between the position vectors of i -th and j -th particles.  

Assuming that the local field at each particle is the same, i.e. ( ) ( )loc i loc j=E r E r , and 

considering ( )j T loc jα=P E r , the effective polarizability of the arrays can be derived 

accordingly: 

 
1

T
eff

TU

αα
α

=
−

                                    (5) 

where 
( ) ( )2 22 2

2 3

3cos 1 3cos 1sin
ijij ij ikrij

j i ij ij ij

ikk
U e

r r r

θ θθ
≠

⎡ ⎤− −
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⎢ ⎥⎣ ⎦

∑                    (6) 

and ijθ is the angle between ijr  and ( )inc iE r .  Notice that U depends on the interparticle 

spacing and the packing configuration of the array.  In this study, the Ag nanorod array has a 
hexagonal packing pattern.  With the substitution of Eq. (3), Eq. (5) becomes 

 

( )
( ) ( ) ( ){ } ( ) ( )( )

3 2 2

3 2 3 2 3 2 3 2

1

1 1 1 1 1

m p
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p m m m m p

S
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⎡ ⎤− +⎣ ⎦=
⎡ ⎤ ⎡ ⎤− − + + − − − + + +⎣ ⎦⎣ ⎦

              (7) 

where A and B are defined as U A iB= + .  The scattering intensity is then the sum of the 
scattered radiation from each particle with this effective polarizability.  This equation exhibits a 
quasi-Lorentzian form.  The resonance peak in a scattering spectrum emerges as the real part of 
the denominator vanishes and, therefore, the full-width at half-maximum can be solved 
accordingly.  It also reveals that A is responsible for plasmon resonance peak shift, while B 
plays a role in the linewidth broadening and is also a function of the interparticle spacing of the 

array, r.  Considering long-wavelength approximation, i.e. ( )exp 1ijikr ≈ , Eq. (6) becomes 

                                                           3U F r iB−≈ ⋅ +                    (8) 

where F is the lattice sum of the hexagonal particle array.  On the other hand, under the 
condition of neglecting the far-field term, 
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( ) ( ) ( )2 3 23cos 1 sin cosij ij ij ij ij
j i

B kr r k kr rθ − −

≠

⎡ ⎤= − −⎣ ⎦∑ .  The introduced error in the real 

part of U for the wavelength of 550 nm is smaller than 0.5% for the interparticle spacing range 
considered in this study.  The leading term of B with a dependence on the interparticle spacing 

is proportional to 5 2
ijk r  which is zero under the long-wavelength approximation.  This 

approximation is therefore not applied the subsequent derivation of B.  From Eq. (7), we can 

derive the resonance frequency, TΩ , the corresponding linewidth, Γ , and the scattering 

intensity at TΩ , ( )TI Ω .  According to Eq. (7), TΩ , corresponding to the maximum value 

of effα , can be extracted by solving ( ) ( ) ( ){ }3 2 3 21 1 1 0p m m TS A C S Aω ε ε⎡ ⎤− − + + − Ω =⎣ ⎦
 and 

is given by 
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Γ  can be determined by evaluating the frequency at half of the maximum value of 
2

effα  and 

is given by  
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Finally, ( )TI Ω  can be expressed as 
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where N(r) is the surface dipole density.  To illustrate the physical contents of the spectral peak 

and width, we can consider the arrays of spherical particles in air.  In this case, 1mε = , 

S R=  and 2C = .  Equations (9)-(11) then become 

 ( ) ( )3
3 1T p F R rωΩ = − ,                    (12) 
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,                      (13) 

and ( ) ( )
2

6 4 T
T pI N r R ω Ω⎛ ⎞Ω ∝ ⎜ ⎟Γ⎝ ⎠

.                     (14) 

In the long-wavelength approximation, B becomes zero and Eq. (12) and the resultant line 
width above are consistent with the derived result by Persson and Liebsch [17].   
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C.  Voigt linewidth 

The dependence of the spectral peak shifting on the interparticle spacing provides a means to 
incorporate the influence of the variation in the interparticle spacing, presented in Fig. 1, in the 
analysis of the spectral width broadening data.  According to Eq. (9), the dependence of the 
variation in ΩT, ΔΩT, on the variation in r, Δr, can be derived as  

 ( )

( ) ( )
2 3

23
6

13

2
1 1

m
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T m m

F S C
r

Sr C F r

ε

ε ε

+
ΔΩ = Δ

⎡ ⎤Ω + + −⎢ ⎥⎣ ⎦

 (15) 

and were used to calculate the inhomogeneous contribution based on the result in Fig. 1 and the 
extracted parameters from the spectral peak-shift analysis in the main text.  The extracted 
Voigt width, ΓV, and r , is shown in the figure below. 

 

Appendix Fig. 2.  Voigt line width (ΓV) vs. mean interparticle spacing ( r ). 

  

D.  Fitting analysis 

The fitted results of the spectral peak shifting vs. interparticle spacing with Eq. (9) are shown in 
Table 1 in the main text. The extracted plasma frequency, ωp, is just 30% away from the one 
obtained by fitting the optical constant [24] of Ag to the Drude model within the wavelength 
range of interest. In the fitting, εm was chosen to be the dielectric constant of alumina [32], 
which is 3 in our case.  Since C shows 5% variation for h varied from 25 to 100 nm, C was 
fixed at 1.2 based on R = 12.5 nm and h = 50 nm.  The fitted results of the spectral broadening 
with Eq. (10) vs. interparticle spacing are listed in Table 1 in the main text. The extracted 
relaxation time, τ, is about 15% higher and ωp is only 10% less than the one obtained by fitting 
the optical constants of Ag to the Drude model.  Finally, the fitted results of the spectral peak 
intensity with Eq. (11) vs. interparticle spacing yield ωp and τ which are listed in Table 1 in the 
main text.  Both ωp and τ  match closely with the values obtained from the fitting of the optical 
constants of Ag with Drude model. In summary, these fitted values comparably agree among 
themselves and with the values extracted from the dielectric constants of Ag, supporting the 
fitting process and Eqs. (9)-(11) used in the fitting.  
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